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Michal Veselý . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Claudia Zaharia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Index of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Registered Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



ICDEA 2017, July 24 - 28, Timişoara, Romania 5
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Global stability and the carrying simplex for

discrete-time competitive population models

Stephen Baigent

Department of Mathematics, University College London, London

E-mail: steve.baigent@ucl.ac.uk

Many discrete-time competitive population models feature a globally1 attracting
Lipschitz invariant manifold known as the carrying simplex (first appearing in [4,
3]), and this manifold has a strong influence on the global dynamics of the model.
Apart from its pure aesthetic interest, the geometry of the carrying simplex can also
inform on the model dynamics. In some well-known population models the computed
carrying simplex appears to be convex or concave, although this seems fiendishly
difficult to prove beyond planar models [1]. The geometry of the carrying simplex
can be linked with global stability via the Split Lyapunov Method [2] originally
developed for Lotka-Volterra differential equations [5].

Via some well-known competition models, and in particular the planar Leslie-
Gower model [1], I will discuss carrying simplices and their geometry, then the Split
Lyapunov Method, and finally how the two are linked.

References

[1] S. Baigent, Convexity of the carrying simplex for discrete-time planar competitive
Kolmogorov systems, J. Difference Equ. Appl. 22 (2015), 1 - 14.

[2] S. Baigent & Z. Hou, Global stability of discrete-time competitive population
models, J. Difference Equ. Appl. 8 (2017), 1 - 19.

[3] M. W. Hirsch, Systems of differential equations which are competitive or cooper-
ative: III Competing species, Nonlinearity 1 (1988), 51 - 71.

[4] H. L. Smith, Periodic competitive differential equations and the discrete dynamics
of competitive maps, Journal of Differential Equations 64 (2) (1986), 165 - 194.

[5] E. C. Zeeman & M. L. Zeeman, From local to global behavior in competitive
Lotka-Volterra systems., Trans. Amer. Math. Soc. 355 (2) (2003), 713 - 734.

1All points in the first orthant except the origin
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Discrete Delayed Exponential and its Applications

(Representation of Solutions, Control Theory)

Josef Dibĺık

Department of Mathematics, Brno University of Technology, Czech Republic

E-mail: diblik@feec.vutbr.cz

With the use of a discrete matrix delayed exponential (which is a matrix formal-
ism of the well-known step-method), new formulas are derived in [3, 4] for solutions
of linear discrete systems with constant coefficients and single delay and used in [2]
to solve a controllability problem. Recently, a growing interest in this topic has been
observed. The original results of [2–4] have been generalized in several directions
and, along with their generalizations, applied to various problems of the represen-
tation of solutions and control problems such as in [1, 5, 6]. The talk will give an
overview of the previous and recent results adding some remarks on the possible
avenues of future research.

References

[1] J. Dibĺık, M. Fečkan, M. Posṕı̌sil, On the new control functions for linear discrete
delay systems, SIAM J. Control Optim. 52 (2014), 1745–1760.

[2] J. Dibĺık, D. Khusainov, M. Růžičková, Controllability of linear discrete systems
with constant coefficients and pure delay, SIAM J. Control Optim. 47 (2008),
1140–1149.

[3] J. Dibĺık, D. Khusainov, Representation of solutions of discrete delayed system
x(k+1) = Ax(k)+Bx(k−m)+f(k) with commutative matrices, J. Math. Anal.
Appl. 318 (2006), 63–76.

[4] J. Dibĺık, D. Khusainov, Representation of solutions of linear discrete systems
with constant coefficients and pure delay, Adv. Difference Equ., (2006), Art. ID
80825, DOI 10.1155/ADE/2006/80825, 1–13.

[5] J. Dibĺık, K. Mencáková, Representation of solutions of higher-order linear dis-
crete systems, Conference on Mathematics, Information Technologies and Ap-
plied Sciences, Univ. Defence Brno, Brno, Czech Republic, June 15-16, 2017,
1–9. ISBN: 978-80-7231-417-1.
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Towards a theory of global dynamics in difference

equations: Application to population dynamics

Saber Elaydi

Department of Mathematics, Trinity University, San Antonio, USA

E-mail: selaydi@trinity.edu

Global dynamics of difference equations/discrete dynamical systems are the most
challenging problems in these disciplines. In this talk, we will explore some of the
recent breakthroughs and advances in this area. The global dynamics of two types
of discrete dynamical systems (maps) have been successfully established. These are
triangular difference equations (maps) and monotone discrete dynamical systems
(maps). We establish a general theory of triangular maps with minimal conditions.
Smith’s theory of planar monotone discrete dynamical systems is EXTENDED via
a new geometric theory to any finite dimension. Then we show how to establish
global stability for maps that are neither monotone nor triangular via singularity
theory and the notion of critical curves.

Applications to models in biology and economics will be discussed.
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Bifurcations in smooth and piecewise smooth

noninvertible maps

Laura Gardini

Department of Economics, Society, Politics, University of Urbino, Italy

E-mail: laura.gardini@uniurb.it

The last decades have been characterized by great achievements in the under-
standing of the dynamics of smooth systems, both in the regular and chaotic regimes.
Characteristic features of noninvertible 2-dimensional maps have been studied by
the French school on iteration theory dating back to the pioneering works of Gu-
mowski and Mira ([3], [4]), as well as by their collaborators from other countries
([6]). Many properties may be generalized to n-dimensional maps, n > 2 (for exam-
ple the homoclinic bifurcations of expanding fixed points or cycles [2], [8]). In this
research field there are still many open problems which deserve to be investigated.

The interest towards the theory of piecewise smooth maps has recently been
increased due to numerous studies in various applied fields, mainly in engineering
and physics, leading to nonsmooth dynamical systems (see, e.g. [1], [7] and the
survey [5]; for the one-dimensional case see [9], [10] and references therein). The
study of local and global bifurcations of attractors and their basins of attraction,
associated with nonsmooth systems will certainly be fruitful in the coming years.

In the present talk we shall recall some basic properties of smooth and nonsmooth
noninvertible maps, outlining useful tools for investigation of their dynamics which
may be of some help for future studies in this field.

References

[1] M. di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, Piecewise-smooth
Dynamical Systems: Theory and Applications, Applied Mathematical Sciences
163, Springer-Verlag, London, 2008.

[2] L. Gardini, Homoclinic bifurcations in n-dimensional endomorphisms, due to
expanding periodic points, Nonlinear Analysis, Theory, Methods & Applica-
tions, 23(8) (1994) 1039-1089.

[3] I. Gumowski, C. Mira, Dynamique chaotique, Toulose: Cepadues Editions,
1980.
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[4] I. Gumowski, C. Mira, Recurrences and Discrete Dynamical Sysytems, Springer
Verlag, NY, 1980.

[5] O. Makarenkov, J. S. W. Lamb, Dynamics and bifurcations of nonsmooth sys-
tems: A survey, Physica D 241 (2012) 1826 - 1844.

[6] C. Mira, L. Gardini, A. Barugola, J. C. Cathala, Chaotic Dynamics in Two-
Dimensional Nonivertible Maps, World Scientific, 1996.

[7] I. Sushko, L. Gardini, Degenerate Bifurcations and Border Collisions in Piece-
wise Smooth 1D and 2D Maps, Int. J. Bif. and Chaos 20 (2010) 2046-2070.

[8] L. Gardini, I. Sushko, V. Avrutin, M. Schanz, Critical homoclinic orbits lead
to Snap-Back Repellers, Chaos Solitons & Fractals 44 (2011) 433–449.

[9] I. Sushko, V. Avrutin, L. Gardini, Bifurcation structure in the skew tent map
and its application as a border collision normal form, J. Difference Equ. Appl.
(2015) doi: 10.1080/10236198.2015.1113273.

[10] I. Sushko, L. Gardini, V. Avrutin, Nonsmooth One-dimensional Maps: Some
Basic Concepts and Definitions, J. Difference. Equ. Appl. (2016) 1 - 56.
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Non-autonomous dynamical systems:

some surprising local and global results

Armengol Gasull

Departament de Matemàtiques, Universitat Autònoma de Barcelona,

08193 Bellaterra, Barcelona, Spain.

Email: gasull@mat.uab.cat

The study of periodic discrete dynamical systems is a classical topic that has at-
tracted the researcher’s interest in the last years, among other reasons, because they
are good models for describing the dynamics of biological systems under periodic
fluctuations whether due to external disturbances or effects of seasonality.

These k-periodic systems can be written as xn+1 = fn+1(xn), with initial condi-
tion x0, and a set of maps {fm}m∈N such that fm = f` if m ≡ ` (mod k) and can be
studied via the composition map fk,k−1,...,1 = fk ◦ fk−1 ◦ · · · ◦ f1.

The aim of this talk is to present some surprising phenomena, of local or global
nature, appearing when we study them. For instance:

Theorem A. (a) For all n ≥ 1 there exist k ≥ 3 polynomial maps fi : U ⊆ Rn → Rn,
for i ∈ {1, . . . , k}, sharing a common fixed point p which is locally asymptotically
for each map, and such that p is repeller for the composition map fk,k−1,...,1.

(b) For all n = 2m ≥ 2 there exist 2 polynomial maps f1, f2 : U ⊆ R2m → R2m,
sharing a common fixed point p which is locally asymptotically for both maps, and
such that p is repeller for the composition map f2,1.

Recall, that the so called Parrondo’s paradox is a paradox in game theory, that
essentially says that a combination of losing strategies becomes a winning strategy.
Theorem A can be interpreted as a kind of dynamical Parrondo’s paradox.

Theorem B. There exist two rational planar maps f1 and f2, well-defined in the
first quadrant, such that f1 has “complicated” dynamics, f2 is rationally integrable
and the composition maps f2,1 and f1,2 are rationally integrable.

These maps are constructed studying the non-autonomous periodic second order
Lyness difference equations xn+2 = (an+xn+1)/xn, where {an} is a cycle of k positive
numbers, i.e. an+k = an.

The above results appear in the joint papers with Anna Cima and Vı́ctor Mañosa,
[1, 2].
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References
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non-hyperbolic fixed points, arXiv:1701.05816 [math.DS]
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Computing areas of attraction and repulsion for

nonautonomous, noninvertible dynamical systems

Thorsten Hüls

Faculty of Mathematics, Bielefeld University, Germany

E-mail: huels@math.uni-bielefeld.de

Stable fiber bundles are the nonautonomous analog of stable manifolds and these
objects provide valuable information on the underlying dynamics. We propose an
algorithm for their approximation that is based on computing zero contours of par-
ticular operators. The resulting program applies to a wide class of models, including
noninvertible and nonautonomous discrete time systems. Precise error estimates are
provided and fiber bundles are computed for several examples. Extended results are
presented that allow an approximation of the stable hierarchy of fiber bundles.

Finally, we apply the contour algorithm to (non)autonomous ODE models. For
the famous three-dimensional Lorenz system, we calculate several approximations
of the two-dimensional Lorenz manifold.

References

[1] Thorsten Hüls. A contour algorithm for computing stable fiber bundles of nonau-
tonomous, noninvertible maps, SIAM J. Appl. Dyn. Syst. 15 (2016) 923–951.

[2] Thorsten Hüls. On the approximation of stable and unstable fiber bundles of
(non)autonomous ODEs — a contour algorithm, Internat. J. Bifur. Chaos Appl.
Sci. Engrg. 26 (2016) 1650118 (10 pages).

[3] Thorsten Hüls. Computing stable hierarchies of fiber bundles, Discrete Contin.
Dyn. Syst. Ser. B, doi:10.3934/dcdsb.2017140 (2017).
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Forward attractors and limit sets of
nonautonomous difference equations

Peter E. Kloeden

Huazhong University of Science & Technology Wuhan

E-mail: kloeden@math.uni-frankfurt.de

The theory of nonautonomous dynamical systems has undergone major devel-
opment during the past 19 years since I talked about attractors of nonautonomous
difference equations at ICDEA Poznan in 1998.

Two types of attractors consisting of invariant families of sets have been defined
for nonautonomous difference equations, one using pullback convergence with infor-
mation about the system in the past and the other using forward convergence with
information about the system in the future. In both cases, the component sets are
constructed using a pullback argument within a positively invariant family of sets.
The forward attractor so constructed also uses information about the past, which is
very restrictive and not essential for determining future behaviour.

The forward asymptotic behaviour can also be described through the omega-limit
set of the system.This set is closely related to what Vishik called the uniform attrac-
tor although it need not be invariant. It is shown to be asymptotically positively
invariant and also, provided a future uniformity condition holds, also asymptotically
positively invariant. Hence this omega-limit set provides useful information about
the behaviour in current time during the approach to the future limit.

References

[1] P. E. Kloeden, T. Lorenz, The construction of non- autonomous forward attrac-
tors, Proc. Amer. Mat. Soc. 144 (2016), no. 1, 259–268.
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equations, J. Difference Equ. Appl. 22 (2016), 513–525.
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Characterization of chaos for piecewise smooth
maps

Alberto Pinto

LIAAD - INESC TEC and Department of Mathematics, Faculty of Sciences,

University of Porto, Portugal

E-mail: aapinto@fc.up.pt

Let f and g be piecewise smooth interval maps, with critical-singular sets, and A
a cycle of intervals for f . We prove that A is a topological chaotic attractor if, and
only if, A is a metric chaotic attractor. Let h|A be a topological conjugacy between
f and g. We prove that, if h is differentiable at a single point p of the visiting set V ,
with non zero derivative, then h is smooth in A. Furthermore, the visiting set V is
a residual set of A and, if the sets Cf and Cg are critical then V has µ full measure,
for every expanding measure µ, with supp µ = A.

References
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between multimodal maps, Journal of the London Mathematical Society 89(1)
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Dynamics of the period maps of time periodic

delay differential equations

Gergely Röst

University of Szeged, Hungary and University of Oxford, United Kingdom

E-mail: rost@math.u-szeged.hu

We give an overview of the dynamics generated by the period map of time pe-
riodic delay differential equations. First we discuss stability issues and Neimark-
Sacker bifurcations that generate an invariant torus. We show that a common
family of equations produce 1:4 strong resonances. For a class of linear equations
with periodic coefficients satisfying a certain sign condition, we give a new and sim-
ply checkable sufficient and necessary condition for the stability of the zero solution.
We construct specific examples to show that an intuitive criterion for the stability
can easily fail, and explore stability switches for various ratios of the delay and the
period. We show that any finite dimensional discrete dynamics can be realized by
scalar periodic delay differential equations, and for an arbitrary map we explicitly
construct the periodic equation such that its Poincaré-map generates a topologi-
cally equivalent dynamics to the n-dimensional dynamics generated by the iterates
of the original map. Finally, we show how these results can be used to explain some
real world phenomena, including malaria dynamics in temperate regions, irregular
cholera outbreaks or the El-Nino phenomenon in climatology.
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Persistence versus extinction for a class of
discrete-time structured population models

Hal Smith

School of Mathematical and Statistical Sciences, Arizona State University,

Tempe, Arizona, U.S.A.

E-mail: halsmith@asu.edu

Horst Thieme

School of Mathematical and Statistical Sciences, Arizona State University,

Tempe, Arizona, U.S.A.

E-mail: hthieme@asu.edu

Wen Jin

School of Mathematical and Statistical Sciences, Arizona State University,

Tempe, Arizona, U.S.A.

E-mail: jwen8@asu.edu

We provide sharp conditions distinguishing persistence and extinction for a class
of discrete-time dynamical systems on the positive cone of an ordered Banach space
generated by a map which is the sum of a positive linear contraction A and a
nonlinear perturbation G that is compact and differentiable at zero in the direction
of the cone. Such maps arise as year-to-year projections of population age, stage, or
size-structure distributions in population biology where typically A has to do with
survival and individual development and G captures the effects of reproduction.
The threshold distinguishing persistence and extinction is the principal eigenvalue
of (I − A) − 1G′(0) provided by the Krein-Rutman Theorem, and persistence is
described in terms of associated eigen-functionals. Our results are illustrated by
application to a plant model with a seed bank.

References

[1] H. L. Smith, H. R. Thieme, Persistence and global stability for a class of discrete
time structured population models, Disc. and Cont. Dynam. Systems-A 33 (2013),
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[2] W. Jin, H. L. Smith, H. R. Thieme, Persistence versus extinction for a class of
discrete-time structured population models, J. Math. Biol. 72 (2016), 821-850.
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On modular happy numbers

Raghib Abu-Saris

Department of Epidemiology and Biostatistics, College of Public Health and

Health Informatics, King Saud bin Abdulaziz University for Health Sciences

King Abdulaziz Medical City, National Guard Health Affairs

Kingdom of Saudi Arabia

E-mail: sarisr@ksau-hs.edu.sa

In this paper, we investigate the asymptotic behavior of the sequences generated
by iterating the process of summing the modular powers of the decimal digits of a
number. In particular, we identify all modular happy numbers. A number is called
modular happy if the sequence obtained by iterating the process of summing the
modular powers of the decimal digits of the number ends with 1.
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Statistical approximation and q-generalizations

of some linear processes

Octavian Agratini

Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail: agratini@math.ubbcluj.ro

This talk is focused on sequences of linear positive operators, the starting point
being represented by Popoviciu-Bohman-Korovkin criterion. Our first aim is to
sum up recent investigation on statistical convergence of this type of approximation
processes. The second aim is to construct a bivariate extension of Stancu discrete
operators. This generalization is based on q-integers and on the tensor product
method.
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Mathematical Modelling of the Growth

of Pseudomonas putita by Gompertz

Dynamic Equations

Elvan Akın

Department of Mathematics and Statistics, Missouri University S&T , USA

E-mail: akine@mst.edu

Neslihan Nesliye Pelen

Department of Mathematics, Ondokuz Mayıs University, Turkey

E-mail: nesliyeaykir@gmail.com

Ismail Ugur Tiryaki

Department of Mathematics, Abant Izzet Baysal University, Turkey

E-mail: ismailutiryaki@gmail.com

The main importance of Gompertz function is able to be applicable to different
types of growth models like tumor, human fetus, human life. In this study, we
propose two Gompertz dynamic equations in order to observe the best fit with the
measurement results of the growth of the Pseudomonas putida. The variation of
parameters on time scales is our approach to show the existence and uniqueness of
the solutions of initial value problems of Gompertz dynamic equations. We also use
mathematica codes the best fitting to the data which are taken from [1].
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Prices under differentiation

João P. Almeida

LIAAD-INESC TEC and Department of Mathematics, Polytechnic Institute

of Bragança, Portugal

E-mail: jpa@ipb.pt

Alberto A. Pinto

LIAAD - INESC TEC and Department of Mathematics, Faculty of Sciences,

University of Porto, Potugal

E-mail: aapinto@fc.up.pt

T. Parreira

Department of Mathematics, University of Minho, Braga, Portugal

We develop a theoretical framework to study the location-price competition in
a Hotelling-type network game, extending the Hotelling model with linear trans-
portation costs from a line (city) to a network (town). We show the existence of a
pure Nash equilibrium price if, and only if, some explicit conditions on the produc-
tion costs and on the network structure hold. Furthermore, we prove that the local
optimal localization of the firms are at the cross-roads of the town.
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Infinite dimensional discrete operators

Narcisa Apreutesei

Department of Mathematics and Informatics , Technical University of Iaşi,

Romania

E-mail: napreut@gmail.com

Vitaly Volpert

Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, France

E-mail: volpert@math.univ-lyon1.fr

This work is devoted to infinite dimensional discrete operators that can be con-
sidered as a difference analog of differential equations on the whole axis. We obtain
a necessary and sufficient condition in order for the linear operator to be normally
solvable. Topological degree for nonlinear operators is constructed. insert here the
text of the abstract.
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Nonlinear Dynamics of fractional order Model

of CD4+ T Cells

Sadia Arshad

LSEC, ICMSEC, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, China

E-mail: sadia 735@yahoo.com

Jianfei Huang

College of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China

Yifa Tang

LSEC, ICMSEC, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, China

In this paper we studied the cycling CD4+ T cells model of HIV infection of
arbitrary order. We consider logistic tumor growth because in infected patients
the division rate of CD4+ T cells deceases approximately linearly with the CD4 T
cell count, suggesting that the growth rate is density dependent and is governed
by a logistic-like growth function. A variety of clinical data sets suggest that virus
replication is limited by the availability of CD4+ T cells. Therefore we investigate
the dynamics of our model by finding equilibrium points of our model. An implicit
numerical scheme using finite difference approximation is proposed which shows an
excellent degree of accuracy when applied to fractional HIV model. A comparison
is made between numerical simulations of proposed implicit numerical scheme and
Grunwald-Letnikov method; we conclude that proposed scheme is reliable to obtain
realistic positive numerical solutions of the HIV model. We present the numerical
simulations of the HIV model to illustrate the dynamics for different fractional order.
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Having been investigated for centuries, recurrent sequences are still relevant for
mathematics and sciences. For example, Fibonacci numbers found applications in
arts and sciences, and still inspire numerous algorithms in computer science.

Generalizing Fibonacci numbers to the complex plane, a Horadam sequence
{wn}∞n=0 is defined by the recurrence wn+2 = pwn+1 + qwn, w0 = a, w1 = b, where
the parameters a, b, p and q are complex numbers.

The geometry and dynamics of complex Horadam sequences and generalizations
have been explored extensively over the past few years. Periodic Horadam sequences
have been characterized in [1], while their geometric structure was investigated in [5].
A wide variety of non-periodic Horadam orbits (stable, quasi-convergent, convergent
or divergent) was presented in [4], some of inspiring the design of a pseudo-random
number generator, investigated by Bagdasar and Chen [2].

This study aims to further explore the dynamics of Horadam orbits and their
generalizations. First, certain extensions of the results concerning the periodicity
of perturbed Horadam sequences given in [6] (where some constant and periodic
perturbations were considered) are presented. Then, we investigate the dynamics
of generalized complex Horadam sequences of arbitrary order (whose periodicity
was investigated in [3]) in a more general context. Finally, links to the trichotomy
concepts for linear discrete-time systems discussed in [7] will be formulated.
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In a recent article, Balreira, Elaydi and Lúıs [1] have developed a geometric
approach to monotonicity for maps defined on Euclidean spaces Rk

+, of arbitrary
dimension k. They have shown that if the inverse of the Jacobian matrix is positive,
then under analytical hypotheses that are motivated from applications to mathe-
matical biology and economics, one can show that Kolmogorov monotone maps on
Rk

+ have a globally asymptotically stable fixed point.

In this talk we will will investigate the extension of these results to the global
stability of periodic monotone maps. The new concept of monotonicity is in-
variant under composition of maps and, surprisingly, the verification of the an-
alytical hypotheses became a question of global injectivity of certain maps asso-
ciated to the periodic system. Namely, given a Kolmogorov type map F (x) =
(x1f1(x), x2f2(x), . . . , xkfk(x)), we say that the associated reduced Kolmogorov map

is given by F̃ (x) = (f1(x), f2(x), . . . , fk(x)). Using classical results for global injec-
tivity, we establish conditions under which the periodic system is globally stable.
We illustrate our techniques by analyzing the Ricker competition model.

References
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In the 1980s, S. Hilger has defined the derivatives on time scales, to unify discrete
and continuous dynamics [1]. Such definition refers to the usual notion of derivatives
in Calculus. The fractional (or non-integer) derivatives has its beginning in the XVII
century [4]. In the last few years the notion of controlled (or conformable) derivatives
emerged in the literature [2]. Nowadays it is discussed whether such derivatives can
be considered properly as of fractional kind or not [5, 3]. In this work, we are being
defining the derivatives on time scales relative to the class of the controlled general
derivatives, and will be giving some basic properties on them.
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of a perturbed discrete equation
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Denote Zq
s := {s, s + 1, . . . , q} where s and q are integers such that s ≤ q.

Similarly a set Z∞s is defined. The paper considers the scalar linear discrete equation
with delay

∆x(n) = −
(

k

k + 1

)k
1

k + 1
x(n− k) + ω(n) (1)

where a perturbation function ω : Z∞a → R will be more precisely defined in the
talk, k ≥ 1 is a fixed integer, n ∈ Z∞a , and a is a whole number.

We prove that there exist two positive solutions x = x1(n), x = x2(n) of equation
(1) defined on n ∈ Z∞a such that x1(n) does not depend linearly on x2(n). Moreover,

lim
n→+∞

x2(n)

x1(n)
= 0.

The boundaries of perturbations guaranteeing the existence of a positive solution
or a bounded vanishing solution of a perturbed linear discrete delayed equation
are given. The proofs are based on a discrete variant of Ważewski’s topological
method [1] and motivated by the method of asymptotic decompositions [2].
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The theory of linear skew-product semiflows emerged from the desire to unify the
study of asymptotic behavior for evolutionary families. In this situation, in order
to obtain uniform asymptotic behavior of the evolutionary families, in literature is
considered mostly the case in which the constant K from the Boundedness Theorem
is independent of θ ∈ Θ.

This paper addresses, using the Perron approach, the problem of exponential
dichotomy for a cocyle Φ(θ, ·) over a continuous semiflow σ, for every θ ∈ Θ fixed,
by renouncing to the possibility to choose the constant K from the Boundedness
Theorem as independent of θ ∈ Θ.

The main theorem proves that, for each θ ∈ Θ, the linear skew-product semiflows
have a similar asymptotic behavior like the behavior of the evolutionary processes
which is highlighted by V. Minh, which is so-called individual exponential dichotomic
behavior for linear skew-product semiflows.
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On extensions of 1D Drossel-Schwabl forest-fire
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We reformulate 1D forest-fire model by Drossel and Schwabl in terms of en-
ergy accumulation and release in order to define Random Domino Automaton - a
stochastic cellular automaton being a toy model of earthquakes. We define respec-
tive parameters related to probability of energy accumulation and release depending
on its amount and propose a set of discrete equations describing stationary state of
the automaton.

We demonstrate that for some class of parameters the distribution of accumu-
lated energy is related to Motzkin numbers and present also a construction of similar
cellular automaton related to Catalan numbers.
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In this paper we study a concept of uniform exponential splitting, as a general-
ization of uniform exponential dichotomy for a cocycle C over a semiflow S.

Discrete characterizations of this concept in terms of Datko’s type, respectively
Lyapunov functions are obtained from the point of view of the projector families
(invariant and strongly invariant).
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Recently a great interest has been shown towards problems regarding partitions
(ωi)i=1..n of a domain D, a subset an euclidean space or of a manifold, which mini-
mize some spectral functionals depending on the spectrum of the Dirichlet Laplace
operator. The main examples are

F(ωi) = λ1(ω1) + ...+ λ1(ωn) and F(ωi) = max
i=1..n

λ1(ωi).

Due to the complexity of the problem, explicit solutions are rarely known, thus
it is important to be able to produce numerical simulations which approximate
optimal partitions. In order to do this we consider a discrete approximation of the
optimal partitioning problem. We present some properties of the discrete problem
and describe how to produce an efficient implementation. The algorithm allows us
to find numerical optimal partitions for a large class of domains D in R2,R3 and on
surfaces in R3. The numerical algorithm is inspired by [1] and more details about
the contents of this talk can be found in [2].
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This is joint work with Fozi Dannan and Sabrina Streipert. In this talk, we
discuss a certain nonautonomous Beverton–Holt equation of higher order. After an
introduction to the classical Beverton–Holt equation and recent results, we solve
the higher-order Beverton–Holt equation by rewriting the recurrence relation as
a difference system of order one. In this process, we examine the existence and
uniqueness of a periodic solution and its global attractivity. We continue our analysis
by studying the corresponding second Cushing–Henson conjecture, i.e., by relating
the average of the unique periodic solution to the average of the carrying capacity.
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[1] M. Bohner, S. Stević, H. Warth, The Beverton–Holt difference equation, in
Discrete Dynamics and Difference Equations, pages 189–193, Hackensack, NJ,
2010. World Sci. Publ., Proceedings of the Twelfth International Conference on
Difference Equations and Applications, Lisbon, Portugal, 23–27 July 2007.

[2] M. Bohner, S. Streipert, The Beverton–Holt equation with periodic growth rate,
Int. J. Math. Comput. 26 (4) (2015), 1–10.

[3] M. Bohner, S. Streipert, Optimal harvesting policy for the Beverton–Holt model,
Math. Biosci. Eng. 13 (4) (2016), 673–695.

[4] M. Bohner, F. Dannan, S. Streipert, A nonautonomous Beverton–Holt equation
of higher order, (2017), submitted.



ICDEA 2017, July 24 - 28, Timişoara, Romania 45
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The aim of the paper is to study polynomial asymptotic properties for linear
discrete-time systems in Banach spaces. We deal with different polynomial concepts
and we give some representative theorems related to this topic.
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[3] M. L. Rămneanţu, T. Ceauşu, M. Megan, On nonuniform polynomial dichotomy
of evolution operators in Banach spaces, International Journal of Pure and Ap-
plied Mathematics 75 (2012), 305-318.

[4] T. Yue , G. Lei, On Polynomial Dichotomy of Linear Discrete-Time Systems in
Banach Spaces, Journal of Mathematical Research with Applications 35 (2015),
543 - 550.



46 Abstracts Book

Stability of two dimensional incommensurate

fractional-order systems

Oana Brandibur

Department of Mathematics and Computer Science, West University of Timişoara,
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This paper presents necessary and sufficient conditions for the asymptotic sta-
bility and instability of the null solution for two-dimensional autonomous linear
incommensurate fractional-order dynamical systems with Caputo derivatives of dif-
ferent orders, of the form {

cDq1x(t) = a11x(t) + a12y(t)
cDq2x(t) = a21x(t) + a22y(t)

where A = (aij) is a real two-dimensional matrix and q1, q2 ∈ (0, 1) are the fractional
orders of the Caputo derivatives.

The theoretical results are obtained employing Laplace transforms and their
asymptotic expansions, as well as complex analysis tools, leading to a generalization
of the well-known Routh-Hurwitz criterion.

As an application, the obtained theoretical findings are later used for investi-
gating the stability properties of a two-dimensional fractional-order conductance-
based neuronal model: {

cDq1v(t) = I − I(v, w)
cDq2w(t) = φ(w∞(v)− w)

where v represents the membrane potential and w is a recovery variable of the
biological neuron.

Moreover, the occurrence of Hopf bifurcations is also discussed, choosing the
fractional orders q1, q2 as bifurcation parameters. Numerical simulations are also
presented to illustrate the theoretical results.
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Uniform exponential (UE) stability of linear difference equations with infinite
delay is studied using the notions of a stability radius and a phase space. The
state space X is an abstract Banach space. We work with non-fading phase spaces
c0(Z−,X ) and `∞(Z−,X ) and with exponentially fading phase spaces of the `p and
c0 types. For equations of the convolution type, several criteria of UE stability are
obtained in terms of the Z-transform K̂(ζ) of the convolution kernel K(·), in terms
of the input-state operator and of the resolvent (fundamental) matrix. These criteria
do not impose additional positivity or compactness assumptions on coefficients K(j).
Time-varying (non-convolution) difference equations are studied via structured UE
stability radii rt of convolution equations. These radii correspond to a feedback
scheme with delayed output and time-varying disturbances. We also consider sta-
bility radii rc associated with a time-invariant disturbance operator, unstructured
stability radii, and stability radii corresponding to delayed feedback. For all these
types of stability radii two-sided estimates are obtained. The estimates from above
are given in terms of the Z-transform K̂(ζ), the estimate from below via the norm of
the input-output operator. These estimates turn into explicit formulae if the state
space X is Hilbert or if disturbances are time-invariant. The results on stability
radii are applied to obtain various exponential stability tests for non-convolution
equations. Several examples are provided.
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The Melnikov functions method and the averaging method are both tools for
finding limit cycles of analytic planar differential systems which are perturbations
of a period annulus. In order to apply the averaging method, one needs to con-
sider some change of variables to transform the planar system into a scalar periodic
equation which perturbs a continuum of constant solutions. In this talk we present
results obtained in [1], where we proved the equivalence of these two methods with
respect to any possible change of variables. More precisely, we proved that the
Poincaré return map of the planar system and the Poincaré translation map of the
scalar equation coincide. For distinct specific changes of variables this was stated
before by Buică–Llibre [2] and proved by Han–Romanovski–Zhang [3].
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[1] A. Buică, On the equivalence of the Melnikov functions method and the averaging
method, Qual. Theory Dyn. Syst. (2016), doi:10.1007/s12346-016-0216-x.
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We consider such difference equations for which exist infinitely many cycles with
period two. In these cases we have observed that the characteristic equation of
the linearized equation of considered difference equation always has a root −1. In
the article [1] we investigated three second-order rational difference equations with
period-two solutions and we proved that the characteristic equation of the linearized
equation of these difference equations has a root−1. Also in all three cases the points
of the cycle are located on a hyperbola. In the book [2] authors mention the similar
observation about dynamics of some third-order rational difference equations (page
107) and that every solution of such difference equations converges to a period-two
solution.

What is the relationship between these three subjects (root −1, infinitely many
cycles with period two, convergence of solutions)? We discuss this connection in the
presentation.

References

[1] M. Avotina, On Three Second-Order Rational Difference Equations with Period-
Two Solutions, Int. J. Difference Equ. 9 (2014), 23–35.

[2] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equations
with Open Problems and Conjectures, Chapman and Hall/CRC, USA, 2008.



52 Abstracts Book

Almost reducibility of linear difference systems

from a spectral point of view
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We prove that, under some conditions, a linear nonautonomous difference system
is Bylov’s almost reducible to a diagonal one whose terms are contained in the Sacker
and Sell spectrum of the original system.

In the above context, we provide an example of the concept of diagonally signif-
icant system, recently introduced by Pötzsche. This example plays an essential role
in the demonstration of our results.
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In the recent paper [1] is considered a discrete time version of the model pro-
posed by [2] which aims to describe a fishery where a population regulated by a
logistic growth function is exploited by a pool of agents that can choose, at each
time period, between two different harvesting strategies according to a profit-driven
evolutionary selection rule. The resulting discrete dynamical system, represented by
a two-dimensional nonlinear map, is characterized by the presence of invariant lines
on which the dynamics are governed by one-dimensional restrictions that represent
pure strategies. Interesting dynamics related to interior attractors, where players
playing both strategies coexist, are evidenced by analytical as well as numerical
methods that reveal local and global bifurcations. In particular, it is shown that
under the assumption of a logistic growth model for the fish stock, chaotic dynamics
can occur along the pure strategy invariant manifolds, so that chaos synchroniza-
tion as well as bubbling and blowout phenomena are observed, thus revealing the
existence of Milnor attractors. Generally speaking, those attractors have interesting
economic implications not only for mentioned example, but also for the entire class
of evolutionary games that this model could represent. In the present work we start
studying this class of evolutionary games based on the analysis of the non-topological
Milnor attractors and related riddled basins.
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In this work, we prove some new results on Sturm-Liouville abstract problems of
second order differential equations of elliptic type in a non-commutative framework.
We study the case where the second member of the differential-operator equation
belong to Lp(0, 1;X), with general p ∈]1,+∞[ and X being a UMD Banach space.
Existence, uniqueness and optimal regularity of the strict solution are proved. This
work improves naturally the ones studied by Cheggag, Favini, Labbas, Maingot and
Medeghri in the commutative case, see [1], [2] and [3].
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E-mail: mirelaaldescu@yahoo.com

The paper considers two concepts of dichotomy with different growth rates for
linear discrete-time systems in Banach spaces. Characterizations (in terms of Lya-
punov type norms) and connections between these concepts are given. The approach
is motivated by various examples.
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West University of Timişoara-Mathematics and Computer Science.



ICDEA 2017, July 24 - 28, Timişoara, Romania 57
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Generalized hypergeometric series are classical special functions that unify many
common special functions into one. We present a discrete analogue of the generalized
hypergeometric functions that unifies many well-known discrete special functions
into one.
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Time scales derivatives and the Radon transform
in the plane
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Departamento de Matemática, Faculdade de Engenharia,

UNESP campus de Ilha Solteira, Brasil

E-mail: barbanti@mat.feis.unesp.br

In this work, we will be considering the derivative on time scales in two variables
on an arbitrary nonempty set in the plane. It will be considered the Radon transform
and properties concerning the replacement of images in this environment.
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We consider the following semilinear fractional initial value problem

Dαu(x) = a(x)uσ(x), x ∈ (0, 1) and lim
x−→0+

x1−αu(x) = 0,

where 0 < α < 1, σ < 1 and a is a positive measurable function on (0, 1).

We establish the existence and the uniqueness of a positive solution in the space
of weighted continuous functions. We also give the boundary behavior of such
solution.
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Global stability in difference equations
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We consider 2- and 3-dimensional maps depending on a parameter. Local stabil-
ity of a fixed point is known up to a critical parameter value where Neimark-Sacker
bifurcation takes place. The aim is to show global stability for all parameter values
where local stability holds. Near the fixed point analytical tools are used to con-
struct a neighbourhood N belonging to the domain of attraction of the fixed point.
The size of the neighbourhoodN is crucial since outsideN rigorous, computer-aided
calculations are applied to show that each point enters into N after finite number of
iterations. The 3-dimensional case is technically more complicated as it requires a
center manifold reduction, and in particular, an estimation for the size of the center
manifold is important. Among others, the difference equations

xk+1 = axk(1− xk−d)

and
xk+1 = xke

a−xk−d

where a is a positive parameter and d = 1 or d = 2, can be handled with our
technique.
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We consider the linear differential equations with random Semi-Markov coeffi-
cients [1]. For definition that systems we introduce a system non-random n equations
which has solutions in every realization Semi-Markov process and find the funda-
mental matrix - solutions of this usually differential equations systems. We assume
that in some time solutions of initial system have random transformations. We in-
troduce Lyapunov function and introduce new definition L2-stability: Zero solution
of the systems with random coefficients with random transformation of solution -
L2-stable, if convergence of integral from 2- mean of random solutions. Our prob-
lems: constructing a system of equations for Lyapunov function in any realization of
Semi-Markov process. We proved Theorem: If for corresponding determinant sys-
tem exists the Lyapunov function, then zero solution of initial system with random
coefficients is L2- stable.
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We carry out the global bifurcation analysis of continuous and discrete polyno-
mial dynamical systems [1]. First, using new bifurcational and topological methods,
we solve Hilbert’s Sixteenth Problem on the maximum number of limit cycles and
their distribution for the 2D general Liénard polynomial system [2], Holling-type
quartic dynamical system [3], and Kukles cubic system [4]. Then, applying a simi-
lar approach, we study 3D polynomial systems and complete the strange attractor
bifurcation scenario for the classical Lorenz system connecting globally the homo-
clinic, period-doubling, Andronov–Shilnikov, and period-halving bifurcations of its
limit cycles which is related to Smale’s Fourteenth Problem [5]. We discuss also
how to apply our approach for studying global limit cycle bifurcations of discrete
polynomial dynamical systems which model the population dynamics in biomedical
and ecological systems.
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Consider the following class of difference equations

xk+1 = f(xk, xk−d),

where f : R2 → R is a C1 function, which is strictly increasing in its first variable and
fulfils either yf(0, y) > 0 or yf(0, y) < 0 for all y ∈ R \ {0}. Under the assumption
that the global attractor exists, we give a Morse decomposition of it. This gives
some insight into the structure of the global attractor. The decomposition is based
on an integer valued Lyapunov function introduced by J. Mallet-Paret and G. Sell
[2] as a discrete time counterpart of their celebrated discrete Lyapunov function
for delay differential equations [1]. Our results apply e.g. to several discrete-time
models arising from life-sciences, such as May’s genotype model, the Wazewska–
Lasota equation or the discrete Mackey–Glass equation.

This is a joint work with Christian Pötzsche (Alpen-Adria Universität Klagen-
furt).
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We associate to each iterated function system consisting of ϕ-max-contractions
an operator (on the space of continuous functions from the shift space on the metric
space corresponding to the system) having a unique fixed point whose image turns
out to be the attractor of the system. Moreover, we prove that the unique fixed
point of the operator associated to an iterated function system consisting of convex
contractions is the canonical projection from the shift space on the attractor of the
system.
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In this talk, a series solutions method for dynamic equations of arbitrary order
on time scales is discussed. The method generalizes the results presented in [3], [4]
and [5] which can be regarded as particular cases of this study. The most important
feature of the method is that it can be applied to any time scales with constant or
variable graininess function. As specific examples, solutions of Hermite and Legendre
dynamic equations on various time scales are obtained by the series solution method.
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The theory of probability on time scales is in its inception. This work is de-
voted to develop the probability theory and introduce the n-dimensional Brownian
motion on general time scales. The main issue in carrying out this construction is
to generalize the well-known concepts such as probability space, probability density
function, normal distribution on time scales. We first introduce the fundamentals of
probability theory on time scales such as probability measure derived from Lebesgue
∆-measure, probability density function and generalized normal distribution. Then,
the stochastic processes on general time scales will be defined. This definition in-
deed unifies the stochastic processes theory in discrete and continuous times. We
conclude our talk by introducing n-dimensional Brownian motion on general time
scales.

References

[1] M. Bohner, O. Stanzhytskyi, A. Bratochkina, Stochastic dynamic equations on
general time scales, EJDE 57 (2013), 1–15.

[2] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction
with Applications, Birkhäuser, Boston, 2003.
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Using topological degree arguments, critical point theory and lower and upper
solutions method we establish non-existence, existence and multiplicity of positive
radial solutions for one parameter systems involving potential Lane-Emden nonlin-
earities, 

M(u) + λµ(|x|)(p+ 1)upvq+1 = 0, in B(R),
M(v) + λµ(|x|)(q + 1)up+1vq = 0, in B(R),
u|∂B(R) = 0 = v|∂B(R).

Here, B(R) = {x ∈ RN : |x| < R}, N ≥ 2 is an integer, µ : [0, R] → [0,∞) is
continuous, µ > 0 on (0, R], the exponents p, q are positive, with max{p, q} > 1 and
M stands for the mean curvature operator in Minkowski space

M(w) = div

(
∇w√

1− |∇w|2

)
.

This talk is based on joint work with Petru Jebelean [1].
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The choice of time as a discrete or continuous variable may radically affect the
stability of equilibrium in an endogenous growth model with durable consumption.
In the continuous-time model the steady state is locally saddle-path stable with
monotonic convergence. However, in the discrete-time model the steady state may
be unstable or saddle-path stable with monotonic or oscillatory convergence.

In this paper, we study general polynomial discretization in backward and for-
ward looking, and the preservation of stability properties. We apply these results to
the Ramsey model. Finally, in this paper, we study the local and global dynamics
of a new discrete Ramsey model.
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The purpose of this talk is to study the dynamical behavior of positive solutions
for a system of rational difference equations of the following form

un+1 =
αun−1

β + γvpnv
q
n−2

, vn+1 =
α1vn−1

β1 + γ1u
p
nu

q
n−2

, n = 0, 1, ...

where the parameters α, β, γ, α1, β1, γ1, p, q are positive real numbers and the initial
values u−i, v−i are non-negative real numbers for i = 0, 1, 2.
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[3] V. Kocić, G. Ladas, Global behavior of nonlinear difference equations of higher
order with applications, Kluwer Academic Publishers, Dordrecht, (1993).
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In this talk I consider the discrete-time Ricker model of n competing types. I start
by a derivation of the model and show that under mild condition the system admits
a carrying simplex, that is, an attracting invariant hypersurface of codimension one.
I then concentrate on the case n = 3 and show that there are essentially 33 different
types of dynamics on the carrying simplex. In particular, I consider the question
of which dimorphic population could have arisen by natural selection and study
invasion of a third type into a dimorphic population.
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In this talk, we shall consider the linear almost periodic system with variable
coefficients

xn+1 = A(n)xn, xn ∈ Rn, n ≥ n0 ≥ 0, (1)

and their applicastion for some type of nonlinear system (cf. [1,3]). Even in non-
linear case, system (1) plays an important role, as their variational equations and
moreover, it is requested to determine the (uniformly) asymptotical stability of the
zero solution from the condition about A(n). In the case where A(n) is a constant
matrix, it is well known that the stability is equivalent to the following condition
(cf. [2]); ”Absolute values of all eigen values of A(n) are less than one.”
However, it is not true in the case of variable coefficients, and hence we need addi-
tional conditions to (1). In the main theorem, we shall show that one of the such
conditions is the diagonal dominance matrix condition on A(n) [3]. This result im-
prove a stability criterion based on results of R. D. Jenks [4] and F. Nakajima [5]
for differential equations.

References

[1] C. Corduneanu, Almost periodic discrete processes, Libertas Mathematica 2
(1982), 159-169.

[2] S. Elaydi, An Introduction to Difference Equations, Third Edition, Springer-
Verlag, New York, 2005.

[3] Y. Hamaya, Existence and stability property of almost periodic solutions in dis-
crete almost periodic systems, to be submitted.

[4] R. D. Jenks, Homogeneous multidimensional differential systems for mathema-
tical models, J. Differential Equ. 4 (1968), 549-565.

[5] F. Nakajima, Existence and stability of almost periodic solutions in almost peri-
odic systems, Publ. RIMS, Kyoto Univ. 12 (1976), 31-47.



ICDEA 2017, July 24 - 28, Timişoara, Romania 73
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The talk is based mainly on the joint works [1, 2, 3] with Michal Veselý. The
main subject of this talk is to present the results concerning the conditional oscilla-
tion of second order linear and half-linear difference and differential equations. We
show the conditions which are sufficient for studied equations to be conditionally
oscillatory, i.e., that there exists a border value given by their coefficients which
separates oscillatory equations from non-oscillatory ones. We explicitly determine
this borderline for the considered equations, including perturbed differential equa-
tions. We also discuss the so-called critical case which is solvable in general only for
some special types of equations.
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[1] P. Hasil, M. Veselý, Oscillation and non-oscillation criteria for linear and half-
linear difference equations, J. Math. Anal. Appl. 452 (2017), 401–428.
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I’ll discuss iterated function systems of diffeomorphisms on compact manifolds
with a focus on synchronization by noise and on-off intermittency. The theory will be
connected to the seemingly different context of Fubini’s nightmare in stably ergodic
diffeomorphisms.
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Fractional order integro-differential equations

solution by artificial neural networks approach
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Great care must be taken in considering the fact that neural networks moved
in the direction of a systematic world such as applied mathematics and engineering
sciences. Such certain movement helped shaping fantastic changes in the numerical
solution of complicated cases which are overt in natural phenomena. In the present
study, a comprehensive optimization mechanism consisting of a reliable three-layered
feed-forward neural network is formed to solve a class of fractional order ordinary
integro-differential equations. One point should be kept in mind that the supervised
back-propagation type learning algorithm which is based on the gradient descent
method, is capable of approximating the mentioned problem on an arbitrary interval
to any desired degree of accuracy. Besides, some comparative test problems are given
to reveal the flexibility and efficiency of the proposed method.
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Global Dynamics of Monotone Second Order

Difference Equation
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We investigate the global character of the difference equation of the form

xn+1 = f(xn, xn−1), n = 0, 1, . . .

with several period-two solutions, where f is decreasing in the first variable and is
increasing in the second variable. We show that the boundaries of the basins of
attractions of different locally asymptotically stable equilibrium solutions or period-
two solutions are in fact the global stable manifolds of neighboring saddle or non-
hyperbolic equilibrium solutions or period-two solutions. We illustrate our results
with many applications.
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The Statement of Polynomial Pencil

of Sturm-Liouville Operators

on Continuous and Discrete case
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Let us consider Polynomial pencil of Sturm-Liouville problem

−y′′ + [q0(x) + λq1(x) + ...+ λn−1qn−1(x)] y = λ2ny (1)

y(0) = y(π) = 0, (2)

where λ is a real parameter, y = y(x, λ) is unknown function and qk(x), k = 0, n− 1
are continuous real-valued functions on [0, π] . In this study, inverse problem for (1),
(2) investigated. By using Prüfer substitution, we obtained asymptotics of spectral
parameters and a reconstruction formula for all the functions qk(x).

Similiar results for discrete case of (1), (2) will be interesting.
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Global Behavior of Some Nonlinear
Nonautonomous Difference Equations
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In this paper we study the global asymptotic behavior of positive solutions of
the nonlinear nonautonomous difference equation of the form

xn+1 = anxnf(xn−k), n = 0, 1, ...

with initial conditions
x−k, ..., x−1 ≥ 0, x0 > 0

where the following hypotheses are satisfied:

(H1) The sequence {an} is positive and periodic with period p, that is

an+p = an, n = 0, 1, ....

(H2) The function f ∈ C[[0,∞), [0,∞)] is decreasing on [0,∞).

(H3) The function xf(x) is increasing on [0,∞).

(H4) The function f(tx)/f(x) is increasing on [0,∞) for t ∈ (0, 1) and decresing on
[0,∞) for t ∈ (1,∞).

We studied the permanence, extreme stability, periodicity, and oscillations in-
cluding the character of semicycles. The obtained results are applied to several
classic periodically forced population models including Beverton-Holt (and equiva-
lent Pielou logistic), Ricker, and Maynard-Smith, models.
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On the Rational Difference Equation

with Quadratic Term
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We give the boundedness character, local and global stability of solutions of the
following second-order rational difference equation with quadratic denominator,

xn+1 =
α + γxn−1

Bxn +Dxnxn−1 + xn−1

where the coefficients are positive real numbers and the initial conditions, x−1, x0,
are nonnegative real numbers such that the denominator is defined.
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On the integrable deformations

of a Hamilton-Poisson system

Cristian Lăzureanu
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A method to construct integrable deformations of a three-dimensional Hamilton-
Poisson system is used in the case of an integrable version of the Rikitake system.
Considering some particular functions of deformation a Hamilton-Poisson system is
obtained. A study of this system from standard and nonstandard Poisson geometry
points of view is performed, namely the stability of the equilibrium points and the
existence of periodic orbits are analyzed. Furthermore, an explicitly construction of
the homoclinic and heteroclinic orbits is presented. In addition, some connections
between the energy-Casimir mapping associated to the considered system and the
above-mentioned dynamical elements are pointed out.

A joint work with Ciprian Hedrea and Camelia Petrişor from Department
of Mathematics, Politehnica University of Timişoara, Romania.
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A complete characterization of exponential

stability for discrete dynamics
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For a nonautonomous dynamics defined by a sequence of bounded and possibly
not invertible linear operators, we give a complete characterization of exponential
stability in terms of invertibility of a certain operator acting on suitable Banach
sequence spaces. We connect the invertibility of this operator to the existence of
a particular type of admissible exponents. For the bounded orbits, exponential
stability results from a spectral property. Some adequate examples are presented to
emphasize some significant qualitative differences between uniform and nonuniform
behavior.
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Generating functions for the number of paths

on multidimensional integer lattice
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In a problem of generalized Dyck paths (see [1]) and vector partition functions
(see [2]) assosiated to M we are given a finite set of steps M= {α1, α2, . . . , αN}, lying
in the open half-space, where αj = (αj1, α

j
2, . . . , α

j
n), j = 1, . . . , N and αji is an integer

number. A number g(y) of paths going from the origin to the point y ∈ Zn using

the steps from M is described by a difference equation g(y) =
N∑
i=1

g(y − αi). Let πj

be an operator such that πjQ(z1, . . . , zn) = Q(z1, . . . , zj−1, 0, zj+1, . . . , zn), J be a
set {j1, . . . , jk}, where 1 6 j1 < j2 < . . . < jk 6 n, and πJ = πj1 ◦ πj2 ◦ . . . ◦ πjk .

Theorem. If g(y) is a solution to a difference equation g(y) =
N∑
i=1

g(y −

αi), then the generating function F (z) of the sequence g(y) satisfies the formula∑
J

(−1)#Jπj Q(z)F (z) = 0, where Q(z) = 1−zα
1
1

1 z
α1
2

2 · . . . ·z
α1
n

n − . . .−zα
N
1

1 z
αN
2

2 · . . . ·z
αN
n

n

and #J is a number of elements of J .
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A Class of Anti-Competitive

Systems of Difference Equations

Chris D. Lynd
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There are 112 systems of two rational-linear difference equations where, for all
positive values of the parameters, the corresponding map is anticompetitive and the
square of the map is strongly competitive. We present a theorem that describes the
global behavior of the solutions for all 112 systems.
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[3] M. R. S. Kulenović, O. Merino, A Global Attractivity Result for Maps with In-
variant Boxes, Discrete and Continuous Dynamical Systems Series B 6 (2006),
97-110.
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New nonlinear estimates for surfaces in terms
of their fundamental forms
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We establish several estimates of the distance between two surfaces immersed
in the three-dimensional Euclidean space in terms of the distance between their
three fundamental forms, measured in various Sobolev norms (see [2]). By imposing
appropriate additional geometrical assumptions, we show that the dependence of the
third fundamental form can be avoided. These estimates generalize in particular the
nonlinear Korn inequality established by P.G. Ciarlet, L. Gratie and C. Mardare [1].

We also show how these nonlinear Korn inequalities can be applied to the non-
linear Koiter shell model and how they can be reduced upon a formal linearization
to linear Korn inequalities on a surface, which play a fundamental role in the math-
ematical analysis of the linear Koiter shell model.
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System With Application to Network
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The purpose of this research is to offer constructive algorithm for estimator search
in network model of biosensors. State variables and measurements are considered as
random vectors. We use information cost criterion in order to find optimal estimator
of inner product.

We apply general approach offered in [1] for modelling biosensor networks using
information cost criterion. We use the following general descriptor system

x(t+ 1) = A(t)x(t) + ux(t) + ξ(t), x(0) = x0,

y(t) = C(t)x(t) + uy(t) + η(t), t = 0, T − 1,

Assume sequences of random vectors {ξ(t), t = 0, T − 1}, {η(t), t = 0, T − 1} are
Gaussian noncorrelated between theirselves and between random vector x0. ux(t),
uy(t) are some disturbances affecting the system dynamics and corrupting the mea-
surement vector correspondingly.
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information cost criterion, 2016 16th International Conference on Control, Au-
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E-mail: rafael.bravo@uah.es

M. Marvá
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Eco-epidemic competition models have attracted increasing attention in the last
years [1]. Empirical observations have shown that disease/parasites can affect in
many different ways the outcome of species competition: as stronger competitor
extinction or weaker competitor survival.

In this talk we present a competition eco-epidemic model that is rich enough to
exhibit the behaviors above described and not so complext that it is analytically
intractable. Competition is built up from the classical discrete time competition
Leslie-Gower model [2] and the disease is introduced by means of a discrete SIS
epidemic model with frequency-dependent transmission [3]. To our attention, this
is the first discrete eco-epidemic competition model.

One of the differences between continuous and discrete models is that in the
former all processes involved in the model (demography, competition and infec-
tion/recovery) occur together whereas in the later, it is usual to consider that pro-
cesses take place sequentially [4]. Keeping this idea in mind, a key feature in the
construction of this model is that a number k of epidemic-related process take place
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within each demographic/competition change. Making use of the existence of dif-
ferent time scales, it is possible to build up a reduced two dimensional system that
approximates the behavior of the original system and that simplifies the analysis of
the model [5].

The resulting reduced system generalizes in some sense the Leslie-Gower compe-
tition model and,for valuesof k large enough retains some of its properties, although
the reduced model allows for disease-induced multistability scenarios.
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In [2] Chow and Leiva introduced the notion of pointwise exponential dichotomy
for skew-product flows. The first input-output criteria for pointwise exponential
dichotomy was obtained by Megan, Sasu and Sasu in [3]. In this presentation, we
expose a comparison between some pointwise and global criteria for exponential di-
chotomy of dynamical systems described by skew-product flows. We present several
necessary and sufficient conditions for pointwise dichotomy and analyze their con-
nections with previous results in this topic. Finally we discuss several future aims
concerning the discrete pointwise dichotomy.
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Functional difference equations arising from
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The renormalization analysis of quasiperiodic dynamical systems (in which the
dynamics are governed by an irrational number) leads to functional difference equa-
tions in which the spatial and temporal dynamics are linked, giving renormalization
strange sets in function-pair space. In this talk we shall give an overview of the
theory, of its application in areas such as quantum systems and strange non chaotic
attractors, and of progress in the study of the associated functional difference equa-
tions.
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We prove that the Markov operator associated to an iterated function system
consisting of ϕ-max-contractions with probabilities has a unique invariant measure
whose support is the attractor of the system.
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The aim of this work is to study some concepts of trisplitting with different
growth rates for linear discrete-time systems in Banach spaces. Characterizations
and connections between these concepts are given. As particular cases we obtain
some results about different concepts of trichotomy (exponential, polynomial and
with different growth rates).
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A numerical technique of orthogonal collocation on finite elements method using
Hermite basis is applied to problems with steep gradients. The applicability of
the method is shown for the solution of adsorption in solids with bidisperse pore
structures. The results are shown in good agreement with the analytic ones when
adsorption isotherm is linear. Comparison is made with the results of fitted mesh
finite difference method and fitted collocation method. The technique is simple
to apply and can be applied to widely applied to the models of adsorption and
desorption in bidisperse solids with non linear isotherms.
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We present a stability analysis of a system of differential equations describing
the evolution of T-cells populations (see [2]). The analyzed system corresponds
to a well-known four-compartmental model of the thymus which involves a logistic
growth term. Unlike existing results on stability for this model which focus either
only on the global population or on the two dominant double-positive and double-
negative populations, the results presented in this paper provide sufficient conditions
for asymptotic stability of all four populations, taken separately. The derived condi-
tions involve parameters related to cells proliferation, death and transfer rates and
are used as constraints in the least-square optimization procedure which provides
estimates for all parameters of the model. The usage of the constraints derived from
the stability analysis ensures that the estimated parameters lead to a mathematical
model with an asymptotically stable fixed point.
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The purpose of this paper is to highlight a sufficient condition in order to prove
that an evolution family without any exponential growth is nonuniform exponen-
tially dichotomic, by using a Perron type approach. The Perron problem for nonuni-
form dichotomy establishes the connection between the asymptotic behaviour of the
homogeneous system and different outputs of the nonhomogeneous associated sys-
tem. More precisely for each continuous and unbounded function on R+, if the
nonhomogeneous system has an unbounded solution and the associated evolution
family has an uniform exponential growth, then the homogeneous system is uni-
formly stable. Such a problem is frequently seen in the study of asymptotic uniform
behaviour of nonautonomous systems.
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Romania

E-mail: eva.kaslik@e-uvt.ro

Mihaela Neamţu
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A three-dimensional tourism sustainability model with delay is considered, based
on the non-delayed version developed in [1, 2, 4]. The model takes into account
the interaction of tourists, environmental resources and the invested capital. We
assume that the environmental resources and capital stock at time t depend on the
number of tourists in the past [3], which justifies the introduction of a time delay
in the mathematical model. As a first step, the positivity of the solutions of the
delay differential system is proved and the existence of positive equilibrium states is
discussed. Next, the stability and existence of Hopf bifurcations are investigated in a
neighborhood of a positive equilibrium, choosing the delay as bifurcation parameter.
Numerical simulations are provided to illustrate the results.
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This talk focuses on the robustness of a specific class of control laws, namely the
piecewise affine (PWA) state feedback function. More precisely, we are interested
in closed-loop systems emerging from linear dynamical systems controlled via feed-
back channels in the presence of varying transmission delays by a PWA controller
defined over a polyhedral partition of the state-space. We exploit the fact that the
variable delays are inducing some particular model uncertainty. Our objective is
to characterize the delay invariance margins: the collection of all possible values
of the time-varying delays for which the positive invariance of the corresponding
region is guaranteed with respect to the closed loop dynamics. These developments
are proving to be useful for the analysis of different design methodologies and, in
particular, for model–based predictive control approaches. The proposed delay mar-
gin describes for example the admissible transmission delays for explicit predictive
control implementation. From a different perspective, the delay margin further char-
acterizes the fragility of predictive control implemented via the on-line optimization
and subject to variable computational time.

References

[1] M.-T. Laraba, S. Olaru, S.-I. Niculescu, Analysis of pwa control of discrete-time
linear dynamics in the presence of variable time-delay, 55th IEEE Conference on
Decision and Control (2016), 567–572.

[2] N. A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe, G. Bitsoris, M. Hovd, Explicit
robustness and fragility margins for linear discrete systems with piecewise affine
control law, Automatica 68 (2016), 334–343.



ICDEA 2017, July 24 - 28, Timişoara, Romania 99
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Barrier options are financial derivative contracts that are activated or extin-
guished when the price of the underlying asset crosses a certain level. Most models
for pricing barrier options assume continuous monitoring of the barrier. However in
practice many (if not all) barrier options traded in markets are discretely monitored.
There are two main difficulties in solving problems for discrete barrier options: I.
When the barrier is discretely monitored, a numerical method may be used to value
the option. However this method increases calculation time exponentially with the
numbers of barrier. II. For problems pricing discrete barrier options, one may use
the trinomial method, but it is less effective when the barrier is very close to the
current asset price. In order to resolve these two problems, we construct a new class
of numerical method which is based on efficient finite difference approximation for
the temporal derivative associated with the nonlinear Black-Scholes partial differen-
tial equation modeling these barrier options. The derivatives in the asset directions
are approximated using spline approximations methods. We show that the proposed
method is unconditionally stable and provide very competitive results.
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The linear stability of finite-amplitude capillary waves on inviscid sheets of fluid is
investigated using conformal mapping techniques [2]. Symmetric and antisymmetric
travelling waves discovered by Kinnersley [3] are perturbed with superharmonic or
subharmonic perturbations and regions of instability are found. The instability
results are corroborated by time integration of the fully nonlinear unsteady equations
[1].
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The purpose of this paper is to emphasize current developments in the stability
theory. Due to the important role played in the study of stable, instable, and, respec-
tively, central manifolds, the properties of exponential dichotomy and trichotomy
for difference equations represent two domains with an impressive development. We
intend to study a general model for nonautonomous linear discret-time dynamical
systems in Banach spaces, the so called discrete-time evolution cocycles.

To this aim, we give some definitions and characterizations for the properties
of exponential stability and instability, and we extend these techniques to obtain
a unified study of the exponential dichotomy and trichotomy. While the classic
theory of dichotomy deals with differential and difference equations with uniquely
determined forward and backward solutions, nowadays applications require a corre-
sponding theory for equations whose backward solutions are not guaranteed to exist
or to be unique. To this goal, we define and characterize a more general dichotomic
behaviour, the exponential splitting. We underline the results by several examples.
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Symmetry method provides significant insights and techniques for finding ex-
act analytic solutions of differential equations. These techniques have also been
extended to discrete as well as semi-discrete equations during last decades. How-
ever, in literature, some inconsistency for group analysis of differential-difference
equations (DDEs) was realised, which has been troublesome for quite some time.
In this talk, the mystery of inconsistency is uncovered as the consequence of non-
commutativity of (difference) shift operators and differential operators obtained by
acting on the standard differential operators by group actions. Noether’s theorem
is extended to DDEs; computation of Noether’s conservation laws of DDEs is illus-
trated with several examples.
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Stability theory for linear difference equations is a mature discipline [1]; however,
to the best of our knowledge, no attention has been paid to the non-asymptotic
behavior of solutions for nonzero initial conditions. We show that solutions of stable
linear difference equations may experience large deviations (peaks of trajectories)
from initial conditions at finite time instants; this phenomenon is similar to that of
differential equations [3]. Three results are presented in this paper.

First, lower bounds on the peak are obtained for nth order difference equations
with equal real roots λi ≡ ρ ∈ ( 1

n
, 1) and initial conditions (0, 0, , . . . , 1).

Second, we prove that for real roots λi ≥ ρ, i = 1, . . . , n, the peak is always
greater than the one observed for equal real roots λi ≡ ρ.

Third, we formulate the conditions on the coefficients a, b of the difference equa-
tion with characteristic polynomial λn+1−aλn+b (see [2]) which unavoidably lead to
peaks for specific initial conditions; lower bounds for the value of peak are provided.

References

[1] S. Elaydi, An Introduction to Difference Equations, Springer New York, 2005.



106 Abstracts Book

[2] S. Kuruklis, The asymptotic stability of xn+1 − axn + bxn−k = 0, J. Math. Anal.
Appl. 188 (1994), 719–731.

[3] B. Polyak, G. Smirnov, Large deviations for non-zero initial conditions in linear
systems, Automatica 74 (2016), 297–307.



ICDEA 2017, July 24 - 28, Timişoara, Romania 107
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The paper is based on the analytical and experimental results from [3]-[4] and
reveals, by numerical methods, the degradation of material stiffness due to the
decrease of the first natural frequency, when the driving frequency is slightly lower
than the first natural frequency of the undegradated structure. By considering
the vibration of the uniform slender cantilever beam as an oscillating system with
degrading hysteretic behavior the following equation is considered

∂2y(x, t)

∂t2
+ 2ζ(t)ω(t)

∂y(x, t)

∂t
+ l4ω2(t)

∂4y(x, t)

∂x4
= 0,

subjected to the boundary conditions

y(0, t) = y0 sin(ωinputt),
∂y(0, t)

∂x
= 0,

∂2y(l, t)

∂x2
= 0,

∂3y(l, t)

∂x3
= 0.

To approximate the solution of the this problem, we use the method of Newton
interpolating series (see [1]) and the Taylor series method (see [2]).
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Let G = (N,E) be a simple graph. A process of reaction and subsequent diffusion
of two components (chemical, populations, ideologies etc.) on G can be described
by the coupled recurrences

xi(t+ 1) = (1− d1)f
(
xi(t), yi(t)

)
+

∑
{i,j}∈E

d1

σj
f
(
xj(t), yj(t)

)
,

yi(t+ 1) = (1− d2)g
(
xi(t), yi(t)

)
+

∑
{i,j}∈E

d2

σj
g
(
xj(t), yj(t)

)
,

i = 1, 2, . . . , |N |. (1)

Here xi and yi represent amounts of the components (concentration, abundance, in-
tensity etc.), d1 and d2 denote dispersion probabilities of the respective components,
σj denotes the degree of the j-th node, and functions f , g describe the reaction of
the components in a node. We assume that the reaction system

u(t+ 1) = f
(
u(t), v(t)

)
, v(t+ 1) = g

(
u(t), v(t)

)
possesses an asymptotically stable equilibrium (u∗, v∗) ∈ R2

+. Consequently, xi(t) ≡
u∗, yi(t) ≡ v∗ is a spatially homogeneous equilibrium of the system (1). The aims
of the contribution are to demonstrate that this equilibrium need not to be stable
and to find conditions for its instability.

The research is motivated by attempts to model a diffusion dynamics of religious
ideas and behavior forms in the ancient Mediterranean, see www.gehir.phil.muni.cz.
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Vojtěch Pravec

Mathematical Institute, Silesian University, Opava, Czech Republic

E-mail: vojtech.pravec@math.slu.cz

It is known that, for interval maps, zero topological entropy is equivalent with
bounded topological sequence entropy as well as with the non-existence of Li-Yorke
scrambled triples. In this paper we answer the question how the situation changes
when instead of interval maps triangular maps of the unit square are concerned.
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Nonlinear Fokker-Planck equations have important applications for modeling
complex system in physics, engineering, biophysics, population dynamics, human
movement sciences, neurophysics and economics. The phenomena described by this
class of equations present a fundamental physical mechanism in common. The re-
sult of cooperative interactions between the subsystems of complex systems consists
in the reduction of the number of degrees of freedom and self-organization of their
subunits into synergetic entities. These synergetic systems admit low dimensional
descriptions in terms of nonlinear Fokker-Planck equations, that describe the essen-
tial dynamics underlying the modeled phenomena. Recently, Wada and Scarfone
[1] derived a non-linear Fokker-Planck equation for non-equilibrium systems related
to the κ-entropy. In 2009, Wada and Scarfone [2] studied the asymptotic behav-
ior of a nonlinear diusive equation obtained in the framework of the κ-generalized
statistical mechanics. This kinetic equation can be characterized by the associated
Lyapunov functional or Bregman type divergence, which is related to the difference
of the κ-generalized free-energies. In standard linear Fokker-Planck equations, Lya-
punov functionals are related with Kullback-Leibler divergences or relative entropies.
Recently, for some nonlinear generalizations of Fokker-Planck equations, Lyapunov
functionals were derived and discussed in relatively general context. The aim of
this paper is to develop an integrated Fokker-Planck approach to quantum statis-
tics, linear nonequilibrium thermodynamics and generalized extensive and nonexten-
sive thermostatistics. In the context of generalized statistical mechanics, nonlinear
Fokker-Planck equations associated with weighted Tsallis and Kaniadakis entropies
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are constructed. Also, the properties and asymptotic behavior of complex systems
described by these classes of equations are investigated. Our approach extends and
generalizes recent results in this field.
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In this work we obtain results concerning the behaviour of the positive solutions
for the following cyclic system of difference equations [3]:

x
(i)
n+1 = aix

(i+1)
n + bix

(i)
n−1e

−x(i+1)
n , i = 1, 2, . . . ,m− 1,

x
(m)
n+1 = amx

(1)
n + bmx

(m)
n−1e

−x(1)n ,
(1)

n = 0, 1, . . ., ai, bi, i = 1, 2, . . . ,m are positive constants and the initial values
x

(i)
−1, x

(i)
0 , i = 1, 2, . . . ,m are positive numbers. More precisely, we study the exis-

tence of the unique nonnegative equilibrium of (1). In addition, we investigate the
boundedness and the persistence of the positive solutions of this system. Finally,
we investigate the convergence of its positive solutions of to the unique nonnegative
equilibrium.
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We will discuss the patterns of periodic solutions, patterns of eventually periodic
solutions and patterns of unbounded solutions of our Piece-wise Difference Equation
that is used as a discrete neural model. In addition, we will compare the similarities
and differences in the patterns between the periodic cycles and patterns of the tran-
sient terms when eventually periodic solutions exist. Furthermore, we will address
the vital question: do eventually periodic solutions always exist or not?
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Exponential Stability in Volterra Difference

Equations
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We use Lyapunov functionals to obtain sufficient conditions that guarantee ex-
ponential stability of the zero solution of the finite delay Volterra difference equation

x(t+ 1) = a(t)x(t) +
t−1∑
s=t−r

b(t, s)x(s).

Also, by displaying a slightly different Lyapunov functional we obtain conditions
that guarantee the instability of the zero solution. The highlight of the paper is
relaxing the condition |a(t)| < 1. Moreover we provide examples in which we show
that our theorems provide an improvement of some of the recent literature.
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Numerical Modeling of Transmission Dynamics

of Hepatitis C Virus among
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Mathematical modeling of infectious diseases is a tool to understand the mech-
anism of how disease spreads and how it can be controlled. Numerical Modeling
involves construction, implementation and analysis of reliable numerical schemes
to solve continuous models. These schemes are constructed with the aim that the
numerical model must preserve all the essential features of the continuous dynam-
ical system. In this paper, the transmission dynamics of hepatitis C virus among
the Injecting Drug Users (IDUs) has been analyzed numerically. A novel uncondi-
tionally stable Non-Standard Finite Difference (NSFD) numerical model is proposed
and its convergence analysis is presented. Numerical experiments are performed and
results are compared with standard finite difference schemes being already used to
handle such problems. These schemes are conditionally convergent and may diverge
for certain values of discretization parameter. The proposed numerical scheme is
dynamically consistent with the biological nature of the continuous model and pre-
serves all of its essential properties.
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Template iterations of quadratic maps and hybrid
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The behavior of orbits for iterated polynomials has been widely studied since the
dawn of discrete dynamics as a research field, in particular in the context of the
complex quadratic family f : C → C, parametrized as fc(z) = z2 + c, with c ∈ C.
While more recent research has been studying the orbit behavior when the map
changes along with the iterations, many aspects of non-autonomous discrete dy-
namics remain largely unexplored.

Our work is focused on iterations of two quadratic maps fc0 = z2 + c0 and fc1 =
z2 + c1, according to a prescribed binary sequence, which we call template [1]. We
study the asymptotic behavior of the critical orbit, and define the Mandelbrot set
in this case as the locus for which this orbit is bounded. Unlike in the case of single
maps, this concept can be understood in several ways. For a fixed template, one may
consider the subset of the parameter space of (c0, c1) in C2 for which the iteration is
critically bounded. Alternately, one may consider, for fixed complex parameters, the
subset of templates which lead to a bounded critical orbit [2]. We approach both
types of sets, as well as hybrid combinations of them, we investigate their basic
topological and fractal properties and propose applications to epigenetics.
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Decoupling and simplifying dynamical systems

on time scales
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We consider the dynamic system in a Banach space on unbounded above time
scale {

x∆ = A(t)x+ f(t, x, y),
y∆ = B(t)y + g(t, x, y).

(1)

This system satisfies the conditions of integral separation with the separation con-
stant ν, nonlinear terms are ε-Lipshitz, and the system has a trivial solution. We
find sufficient conditions under which the system (1) is locally dynamic equivalent{

x∆ = A(t)x+ f(t, x, u(t, x)),
y∆ = B(t)y + g(t, κ(t, x, y), y).

(2)

If (1) is regressive and time scale is unbounded below, than the system (1) is
locally dynamic equivalent{

x∆ = A(t)x+ f(t, x, u(t, x)),
y∆ = B(t)y + g(t, v(t, y), y).

(3)
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Discrete Approximations to Volterra Equations
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The asymptotic behaviour of solutions to linear Volterra integral equations of
the form

x(t) =

∫ t

0

k(t, s)x(s) ds+ f(t), (?)

for t in [0,∞), has been extensively studied. Sharp conditions on the kernel k and
forcing function f have been found [1] to ensure that x(t) converges to a constant c
as t→∞.

There is considerable literature [2, 3] on the approximation of solutions of (?)
on compact intervals [0, T ]. This talk examines the problem as to how the asymp-
totically constant solutions on [0,∞) should be approximated numerically. The
approach is to impose natural conditions on the kernel k, the forcing function f
and the quadrature rule used, and show that these imply that the discretisation has
suitable properties. The method seems to fail when c is not explicitly known, as can
happen.

There is considerable literature [2, 3] on the approximation of solutions of (?) on
compact intervals [0, T ].

This is joint work with E. Messina (The University of Naples Federico II) and
A. Vecchio (CNR - Naples)
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Dichotomy spectrum and topological conjugacy

on nonautonomous unbounded difference system
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We will consider the nonautonomous linear system

x(n+ 1) = A(n)x(n) (1)

where x(n) is a column vector of Rd and the matrix function n 7→ A(n) ∈ Rd×d is
non singular. We also assume that (1) has an exponential dichotomy on Z [1] with
projector P = I. We also consider the perturbed system

w(n+ 1) = A(n)w(n) + f(n,w(n)) (2)

where f : Z × Rd → Rd is continuous in Rd is a Lipschitz function such that n 7→
f(n, 0) is bounded for any Z.

We will present a result with sufficient conditions ensuring that (1) and (2) are
topologically equivalent, namely the existence of a map H : Z × Rd → Rd with the
following properties: i) For each fixed n ∈ Z, the map u 7→ H(n, u) is a bijection.
ii) For any fixed n ∈ Z, the maps u 7→ H(n, u) and u 7→ H−1(n, u) = G(n, u) are
continuous. iii) If x(n) is a solution of (1), then H[n, x(n)] is a solution of (2).
Similarly, if w(n) is a solution of (2), then G[n,w(n)] is a solution of (1).

This result can also be seen as a generalization of a continuous result obtained
by Lin in [3].
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Stochastic difference equations with the Allee

effect
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For a truncated stochastically perturbed equation xn+1 = max{f(xn)+ lχn+1, 0}
with f(x) < x on (0,m), which corresponds to the Allee effect, we observe that
for very small perturbation amplitude l, the eventual behavior is similar to a non-
perturbed case: there is extinction for small initial values in (0,m−ε) and persistence
for x0 ∈ (m+ δ,H] for some H satisfying H > f(H) > m. As the amplitude grows,
an interval (m−ε,m+δ) of initial values arises and expands, such that with a certain
probability, xn sustains in [m,H], and possibly eventually gets into the interval
(0,m − ε), with a positive probability. Lower estimates for these probabilities are
presented. If H is large enough, as the amplitude of perturbations grows, the Allee
effect disappears: a solution persists for any positive initial value.
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The approximation of boundary controls

for the one-dimensional wave equation
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We consider a finite-differences semi-discrete scheme for the approximation of
boundary controls for the one-dimensional wave equation. The high frequency nu-
merical spurious oscillations lead to a loss of the uniform (with respect to the mesh-
size) controllability property of the semi-discrete model in the natural setting. We
prove that, by filtering the high frequencies of the initial data in an optimal range,
we restore the uniform controllability property. Moreover, we obtain a relation be-
tween the range of filtration and the minimal time of control needed to ensure the
uniform controllability, recovering in many cases the usual minimal time to control
the (continuous) wave equation.

More precisely, we improve the results of [1] by filtering in an optimal way the
initial condition. We obtain a precise estimate on the minimal time needed that
turns out to be optimal as soon as we filter enough frequencies. We emphasize that
beyond the theoretical interest of our result, it is likely that it is of interest to try to
allow filtrations which contain as many modes as possible, in order to improve the
precision of the approximation.
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Iterated Means Dichotomy for

Discrete Dynamical Systems2
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In this paper, we discuss the dichotomy of iterated means of discrete dynamical
systems acting on a compact convex subset of the finite dimensional space. As an
application, we study the mean ergodicity of non-homogeneous Markov chains.
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On the asymptotic stability of discrete

crocodilians model

Kaori Saito

Iwate Prefectural University, Miyako College, Japan

E-mail: saito k@iwate-pu.ac.jp

The sex ratio of crocodiles is strongly biased towards females, often as high
as 8 females to 1 male. In crocodilians, the temperature of egg incubation is the
environmental factor determining sex. If the temperature is low, around 30, the
hatchlings are all females. Highter temperature, around 34, hatch all males.

This study was made to consider the asymptotic stability of a positive equilibrium
point in a nonlinear discrete model of the basic nesting population model, which is
described in three-region depending on the temperature of egg incubation. This
basic model based on key life-history data [5] and Murray’s research [3, 6]. To
study above, we have applying the classical linearization method [1, 2] and a luxury
Liapunov function [4].
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A remark on difference equations
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We rephrase simple observations on difference equations, including the Z-trans-
form, by adopting an operator-theoretic perspective. This is joint work with Rainer
Picard and Sascha Trostorff.
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The aim of this paper is to approximate the solution of a stochastic differential
equation driven by step-fractional Brownian motion using a series expansion for
the noise. We prove that the solution of the approximating equations converge in
probability to the solution of the given equation.
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Snap-back repellers and critical homoclinic orbits
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A nondegenerate homoclinic orbits to an expanding fixed point of a map F :
X → X, X ⊆ Rn is called a snap-back repeller. It is known that the existence of
a snap-back repeller (in its original definition) implies the existence of an invariant
set on which the map is chaotic [4, 1, 2, 5]. However, it not well known when the
first homoclinic orbit appears, and when other homoclinic explosions, i.e., appear-
ance of infinitely many new homoclinic orbits, occur. Our aim is to characterize
these bifurcations, for any kind of maps, smooth or piecewise smooth, continuous
or discontinuous, defined in a bounded or unbounded set. For this we define a non-
critical homoclinic orbit [3], then a homoclinic orbit of an expanding fixed point is
structurally stable iff it is noncritical, that is, only critical homoclinic orbits are re-
sponsible for the homoclinic explosions. Different kinds of critical homoclinic orbits
are investigated, as well as their role for the dynamics of the map.
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In [1] we presented a broad class of the systems of ordinary difference equations
(O∆E) sharing the property to have a nontrivial Lax representation. This repre-
sentation, in principle, gives a simple procedure to derive some number of the first
integral for the system under consideration but this can be done only for this con-
crete system but not for whole class which involve this system. In our report we set
and discuss the problem of constructing the first integrals for whole infinite classes
of O∆E given in [1].

In a report we consider two infinite classes of ordinary difference equations of
the form

T (i+ k + s)T̃ ks (i) = T (i)T̃ ks (i+ 2) (1)

and
T (i+ k)S̃ks (i) = T (i+ s)S̃ks (i+ 2) (2)

for k ≥ 1 and s ≥ k+ 1, where the discrete polynomials T̃ ks (i) and S̃ks (i) are defined
in [1] and [2]. All these equations, in fact, can be rewritten in normal form

T (i+ k + s) = R(T (i), . . . , T (i+ k + s− 1))

with some rational function R which depends also on some constants (c1, . . . , ck).
Based on actual calculations using the Lax representation, we propose an approach
to construct the first integrals for the O∆E (1) and (2). By and large this approach
does not depend on the Lax representation and allows to construct a number of
integrals for whole classes equations (1) and (2) in terms of special classes of discrete
polynomials.

It is worthwhile to distinguish two cases: k + s = 2g + 1 and k + s = 2g + 2.
With some technical propositions, we derive g the first integrals in the first case and
g + 1 the first integrals in the second case. All these integrals also appear as the
coefficients of equation P (z, w) = 0 of hyper-elliptic spectral curve. We prove that
solution spaces N k

s with fixed value of k + s are organized in chains of inclusions.
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These results suggest that these ordinary difference equations may be integrable
in a Liouville-Arnold sense.
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We are concerned with existence of multiple periodic solutions for differential equa-
tions involving Fisher-Kolmogorov perturbations of the relativistic operator of the
form

− [φ(u′)]
′
= λu(1− |u|q)

as well as for difference equations, of type

−∆ [φ(∆u(n− 1))] = λu(n)(1− |u(n)|q);

here q ∈ (1,∞) is fixed, ∆u(n) = u(n+ 1)−u(n) is the forward difference operator,
λ > 0 is a real parameter and

φ(y) =
y√

1− y2
(y ∈ (−1, 1)).

The approach is variational and relies on a generalization of a result for smooth func-
tionals of Clark [1] to convex, lower semicontinuous perturbations of C1- functionals
due to Szulkin [3]. This talk is based on joint work with Petru Jebelean.
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Linéaire 3 (1986), 77 - 109.



ICDEA 2017, July 24 - 28, Timişoara, Romania 135
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In their paper, Schweizer and Smı́tal [1] introduced the notions of distributional
chaos for continuous maps of the interval, spectrum and weak spectrum of a dynam-
ical system. Among other, they have proved that in the case of continuous interval
maps, both the spectrum and the weak spectrum are finite and generated by points
from the basic sets. Here we generalize the mentioned results for the case of contin-
uous maps of a finite tree. While the results are similar, the original argument is not
applicable directly and needs essential modifications. In particular, it was necessary
to resolve the problem of intersection of basic sets, which was a crucial point.

An example of one-dimensional dynamical system with an infinite spectrum is
presented.
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We will give a detailed analysis complete with open problems and conjectures
of the global character of the solutions of the piecewise linear difference equations
xn+1 = |xn| + ayn + b and yn+1 = xn + c|yn| + d where a, b, c, d ∈ {−1, 0, 1} and
(x0, y0) ∈ R2 with emphasis on the special cases that exhibit unbounded or periodic
solutions.
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In this paper, we present some new Lyapunov type inequalities for second-order
forced dynamic equations on time scales T of the form(

r(t)Φβ(x∆(t)
)∆

+ q(t)Φγ (xσ(t)) = f(t); t ∈ [t0,∞)T

in the sub-half-linear (0 < γ < β) and the super-half-linear ( 0 < β < γ < 2β) cases
where Φ∗(s) = |s|∗−1s. No sign restrictions are imposed on the potential q, and the
forcing term f .
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On AGIIFSs having attractor
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We study affine generalized infinite iterated function systems (for short AGI-
IFSs). One of the main tools that we use in our work is a technique introduced
by F. Strobin and J. Swaczyna which allows to associate to each n ∈ N∗ and each
AGIFS F a new AGIFS Fn. Our main result states that the following statements
are equivalent: a) There exists n ∈ N∗ such that Fn is hyperbolic. b) There exist
n ∈ N∗ and a comparison function ϕ such that Fn is ϕ-hyperbolic. c) There exists
n ∈ N∗ such that Fn has attractor. d) F has attractor. e) There exists n ∈ N∗ such
that Fn is strictly topologically contractive.

References

[1] R. Atkins, M. Barnsley, A. Vince, D. Wilson, A characterization of hyperbolic
affine iterated function systems, Topology Proc. 36 (2010), 189–211.

[2] R. Miculescu, A. Mihail, Alternative characterization of hyperbolic affine infinite
iterated function systems, J. Math. Anal. Appl. 407 (2013), 56–68.

[3] A. Mihail, R. Miculescu, Applications of Fixed Point Theorems in the Theory of
Generalized IFS, Fixed Point Theory Appl. Volume 2008, Article ID 312876, 11
pages doi: 10.1155/2008/312876.

[4] E. Oliveira, F. Strobin, Fuzzy attractors appearing from GIFZS, Fuzzy Sets Syst.
(2007), in print, https://doi.org/10.1016/j.fss.2017.05.003.

[5] F. Strobin, J. Swaczyna, A code space for a generalized IFS, Fixed Point Theory
17 (2016), 477-493.



ICDEA 2017, July 24 - 28, Timişoara, Romania 139

Solution spaces of homogeneous linear difference

systems with coefficient matrices from

commutative groups

Michal Veselý
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The talk is based on the joint works [1, 2] with Petr Hasil. We analyse the solution
spaces of limit periodic homogeneous linear difference systems, where the coefficient
matrices of the considered systems are taken from a commutative group which does
not need to be bounded. In particular, we study such systems whose fundamental
matrices are not asymptotically almost periodic or which have solutions vanishing
at infinity. We identify a simple condition on the matrix group which guarantees
that the studied systems form a dense subset in the space of all considered systems.
The obtained results improve previously known theorems about non-almost periodic
and non-asymptotically almost periodic solutions. Note that the elements of the
coefficient matrices are taken from an infinite field with an absolute value and that
the corresponding almost periodic case is treated as well.
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[2] P. Hasil, M. Veselý, Solution spaces of homogeneous linear difference systems
with coefficient matrices from commutative groups, in press in J. Difference Equ.
Appl., doi: 10.1080/10236198.2017.1326912.



140 Abstracts Book

On Bailey’s fixed point theorem in fuzzy metric
spaces

Claudia Zaharia
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We present a general fixed point result for mappings with contractive iterates in
compact fuzzy metric spaces of George and Veeramani type, extending theorems in
[1] and [2]. Motivated by [3], we suggest an application for the convergence analysis
of a particle swarm optimization algorithm.
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Cristina Andreea Băbăiţă (Romania) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 95

Mariusz Bia lecki (Poland) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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Claudia Luminiţa Mihiţ (Romania) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 92, 102

Ajay Kumar Mittal (India) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Ana-Maria Mitu (Romania) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Radu Dumitru Moleriu (Romania) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

Lavinia Cristina Moleriu (Romania) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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Mihaela Neamţu (Romania) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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Jaromı́r Baštinec, Brno University of Technology, CEITEC, Czech Republic



150 Abstracts Book
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Álvaro Castañeda, University of Chile, Chile
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